Saturday, January 18, 2020

Durability of structure , Factors affecting durability of Building , Requirements for durability, Exposure Condition

DURABILITY - a durable steel structure is one that platform satisfactorily the desired function in the working environment under anticipated exposure condition during its service life, without deterioration of the cross-sectional area and loss of strength due to corrosion.
the material used, the detailing, fabrication, erection and surface protection measures should all address the corrosion protection and durability requirements.
                                   Requirements for Durability
As per Cl. 15.2.1 of IS-800-2007 Shape, Size ,Orientation of Members Connections and details
The design, fabrication and erection details of exposed structures should be such that good drainage of water is ensured. standing pool of water , moisture  accumulation and rundown of water for extended duration shall be avoided.
the details of connections should ensure that:
a) All exposed surfaces are easily accessible for inspection and maintenance;
b)All surfaces, not so easily accessible are completely sealed against ingress of moisture.
As per Cl. 15.2.2 of IS-800-2007 Exposure Condition
The general environment , to which a steel structure is exposed building its working life is classified into five levels of severity.
Sn.          Environmental classifications                  Exposure Conditions
i)  mild                            Surfaces normally protected against exposure                                                          to weather or aggressive condition as in interior of                                                building, except when located in coastal areas
ii) Moderate                               Structural Steel  Surfaces:
                                                   a) exposed to condensation and rain   
                                                  b)Continuously under water
                                                 c) exposed to non-aggregate soil/underwater
                                                 d) Sheltered from saturated salt air in coastal areas
iii) Severe                    Structural Steel  Surfaces:
                                              a) exposed to severe frequent rain
                                              b) exposed to alternate wetting and drying
                                               c) severe condensation
                                               d)Completely immersed in sea water
                                                e) exposed to saturated salt air in coastal area
iv) very severe                      Structural Steel  Surfaces exposed to:
                                                                     a) sea water spray
                                                                      b) corrosive fumes
                                                                      c) aggressive subsoil or groundwater
v) Extreme                              Structural Steel  Surfaces exposed to:
                                                           a) tidal zones and splash zones in the sea
                                                           b) aggressive liquid or solid chemicals
                                   
                        Factors affecting durability of the Building/ Structure 
factors that affect the durability of the buildings under condition relevant to their intended life are listed below.
a) Environment
b) Degree of exposure
c) Shape of the member and structural detail
d) Protective measure
e) Ease of Maintenance

Thursday, January 2, 2020

Camber/ Cross Fall,Geometric Design and Alignment of Camber or Cross Fall

Camber/ Cross Fall
The reason for that is because most roads have a camber to them that helps water drain off of them rather than pooling up in the center of the road
The camber is any curve on a surface, and in this case refers to upward curve from the edge of a road towards the center.


As per IRC SP:73:2015 Clause; 2.8.1 - The crossfall on straight sections of road carriageway, paved shoulders and paved
portion of median shall be 2.5 percent for bituminous surface and 2.0 percent for cement
concrete surface.


As per IRC SP:73:2015 Clause; 2.8.2 - The cross fall for earthen shoulders on straight portions shall be at least 0.5 percent steeper than the slope of the pavement and paved shoulder subject to a minimum of 3.0 percent. On super elevated sections, the earthen portion of the shoulder on the outer side of the curve shall be provided with reverse crossfall of 0.5 percent so that the earth does not drain on the carriageway and the storm water drains out with minimum travel path.

As per IRC SP:73:2015 Clause; 2.8.3 -The two-lane roads shall be provided with a crown in the middle. On horizontal curves, the carriageway shall be super elevated.


                                          Image Source:engineeringdiscoveries



Geometric Design and Alignment
As per IRC SP:73:2015 Clause; 2.9.1 -Geometric design shall conform to IRC:73 except as otherwise indicated in this Manual. While designing the horizontal alignment, the following general principles shall be kept in view:
i) Alignment should be fluent and it should blend well with the surrounding topography.
ii) On new roads, the curves should be designed to have largest practical radius,
but in no case less than ruling value corresponding to ruling design speed.
iii) As a normal rule, sharp curves should not be introduced at the end of long tangent since these can be extremely hazardous.
iv) The curves should be sufficiently long and they should have suitable transitions to provide pleasing appearance.
v) Reverse curves shall be avoided as far as possible. Where unavoidable,sufficient length between two curves shall be provided for introduction of requisite transition curves.
vi) Curves in the same direction, separated by short tangents known as broken back curves, should be avoided as far as possible.
vii) To avoid distortion in appearance, the horizontal alignment should be coordinated carefully with the longitudinal profile.
viii) Hair pin bends on hilly terrain should be avoided as far as possible.

Total Station Survey,Total Station, Electronic Tachometer (ET)

In field survey, use of electronics-based instruments is now so widespread that it would be difficult to imagine any contemporary site surveying without it.
 The recent applications of electronics in surveying instruments have enabled surveyors to collect and process field data much more easily and to a higher precision than is possible using routine instruments.

Definition of Total Station

 A total-station is an optical instrument used as a primary contrivance for modern surveying.
 It is a combination of an electronic theodolite (transit), an electronic distance meter (EDM) and software running on an external computer known as a data collector.
 When these instruments are combined and interfaced with EDMS and electronic data collectors, they become total-stations or electronic tacheometers (ET).

Methodology

With a total-station one may determine horizontal and vertical angles together with slope distances from the instrument to points to be surveyed.

 With the aid of trigonometry and triangulation, the angles and distances may be used to calculate the coordinates of actual positions (X, Y, and Z or northing, easting and elevation) of surveyed points, or the position of the instrument from known points, in absolute terms. These are operated using a multi-function keyboard which is connected to a microprocessor built into the instrument.
 The microprocessor in the total-station can not only perform a variety of matnematical operations-for example, averaging multiple angle measurements, averaging muitiple distance measurements, calculation of rectangular coordinates, calculation Slope corrections, distances between remote points, remote object elevations, atmospheric and instrumental corrections but in some cases, can also store observations directly using an internal memory.
  Many total-stations also enabled with a GPS interface.
GPS technology has advantageously been used in total-stations.
 The use of GPS enhances the capability of a total-station as the line of sight is not required between points to be measured, and as compared to a traditional total-station, high precision for the measurement is enhanced especially in the vertical axis compared with GPS. These reduce the consequences of each technology's disadvantages, ie, GPS for poor accuracy in the vertical axis and lower accuracy without long occupation periods, and total-station which requires line of sight observations and must be set up over a known point or within a line of sight of two or more known points.


Modern Technology

Most modern total-station instruments measure angles by means of electro-optical scanning of extremely precise digital bar-codes etched on rotation glass cylinders or discs within the instrument.
 The best-quality total-stations are capable of measuring angles down to 0.5 arc-second.
The low-cost construction-grade total-stations can generally measure angles up to 5 or 10 arc-seconds. Measurement of distance is accomplished with a modulated microwave or infrared carrier signal, generated by a small solid-state emitter within the instrument's optical path, and bounced off of the object to be measured.
 The modulation pattern in the returning signal is read and interpreted by the onboard computer in the total-station.
 The distance is determined by emitting and receiving multiple frequencies, and determining the integer number of wavelengths to the target for each frequency.
Most total-stations use a purpose-built glass Porro prism as the reflector for the EDM signal, and can measure distances out to a few kilometers, but some instruments are reflectorless, and can measure distances to any object that is reasonably light in color, out to a few hundred meters.
 The  typical total-station EDM can measure distances accurate to about 3 millimeters or 1/100th of a foot. Moreover, some modern total-stations are 'robotic' allowing the operator to control tne instrument from a distance via remote control. This eliminates the need for an assistant staff member to hold the reflector prism over the point to be measured. 
The operalor holds the reflector him-herself and controls the total-station instrument from the Observed points. Though a number of companies are manufacturing total-stations, to acquaint the reader, Leica TCA 1800 and Nikon C-100 total-stations. 

Types of drawings in any construction project:

Types of drawings in any construction project: 1. IFC Drawing: Detailed drawings considered final, issued, and approved by the design team f...